
 

  
Abstract— High temperature, high pressure arc lamps are 

used to thermally process semiconductor wafers. An accurate 
dynamic model that links radiation output to current input 
would facilitate the design of a power circuit that optimizes 
energy transfer to the arc.  A finite volume arc model was 
derived using averaging of the energy balance equation over 
spatial domains.  The space averaging approach accurately 
models the partial differential equation form of the energy 
balance equation, as tested with both steady state and transient 
arc currents, including high energy pulses with a current 
amplitude range from 400A to 40kA and a pulse width of a 
millisecond or less 

 
Index Terms—arc lamp, finite volume method 

I. INTRODUCTION 

A high temperature, high pressure arc lamp is used for 
rapid thermal processing of semiconductor wafers.  The lamp 
uses rapid pulses of optical radiation to heat the surface of the 
wafer to a high temperature in a short period of time, thus 
limiting diffusion of materials into the wafer. The current 
through the arc is pulsed from a simmer current of 
approximately 400A to as much as 40kA and back in a time 
on the order of 1 ms [1].   Power circuits that can control the 
flow of energy to the arc are required to power the lamp, so 
that the desired wafer temperature distribution can be 
obtained.  An accurate dynamic model of the argon arc that 
links radiation output to current input would aid in the design 
of such power circuits.  

Existing arc models used in power circuit designs are 
empirical. The coupling between the electric and heat flux 
density fields is not included. Therefore the temporal 
evolution of the optical output cannot be determined.  

Existing design procedures for designing pulse-forming 
networks for flash lamps are well known.  These methods are 
based on a quasi steady state model of the arc. For example, 
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for a single mesh L/C drive circuit, J.P. Markiewicz and J.L. 
Emmet have defined formulas to describe the lamp electrical 
behavior and to choose appropriate L and C values, in 
Equations (1) to (5) [2]. 

Arc voltage is assumed to be given by: 
 5.0)(iKv o±=       (1) 

This equation is used to describe the arc if the current density 
is greater than 500A/cm2.  Ko is known as the impedance 
parameter and is defined in (2). 
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P is fill pressure (torr), larc is arc length (mm), d is bore 
diameter (mm), and K1 is a constant which is different for each 
gas. 

Given the arc characterization in (1) and (2), the capacitor 
value for a simple LC pulser can then be chosen as follows: 
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Uch is the stored energy (joules), a is a damping parameter 
which is 0.8 for critical damping, and τ is a time parameter in 
seconds, corresponding to 1/3 of the desired pulse width.  If 
the pulse is approximately sinusoidal then the pulse width can 
be described as half a period of a sinusoidal wave.  Thus τ is 
1/6 of the period or approximately 1/2π times the period, 
leading to (4).   
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The initial voltage Vch across the storage capacitor can be 
calculated as follows: 
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According to [2], Equations (1) to (5) give good first order 
approximations and can be used to predict the shapes of 
current pulses, although they do not incorporate arc dynamics.  
This type of modeling approach cannot be used to optimize 
the pulse forming network for optimum energy transfer from 
the electrical supply to the wafer via infrared radiation. 

A number of mathematical models exist to describe 
dynamic arc behavior.  The most commonly used arc models 
are the Cassie, Mayr, and Cassie-Mayr models.  Other existing 
dynamic models are primarily modifications or combinations 
of these models. 
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A. Cassie Model 
Cassie investigated high current arcs [3], [4] and assumed 

that their power losses were mainly a result of convection 
losses.  The arc is assumed to maintain a relatively constant 
temperature and conductivity, and as the current i increases, 
the arc diameter increases, leading to an increase in 
conductance Gc. 

An arc time constant, θ, is given by the ratio of energy 
stored, Uarc, to power loss, Qloss (6).   
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The steady-state electric field Ess, remains relatively 
constant, and v is the arc voltage.  The Cassie model is 
represented by the following equation: 
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B. Mayr Model 
Mayr [3], [4] investigated small current arcs and assumed 

that thermal conduction was the primary form of power loss.  
In this case, the cross-sectional area of the arc does not have a 
strong impact on the arc conductance, and can be assumed to 
be constant.  In Mayr’s arc model, electrical conductivity is 
dependent on temperature, and temperature varies in both time 
and space.  Mayr modeled power loss, Qloss, as constant.  The 
Mayr model is described by the following equation: 
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C. Cassie-Mayr Model 
The Cassie model is valid primarily at high currents and the 

Mayr model at small currents, near the current zero [3, 4].  To 
cover a larger range of arc behavior, the Cassie and Mayr 
models may be combined.  Gm, the Mayr conductance, is used 
for the small-current region, and Gc, the Cassie conductance, 
is used for the high-current region.  This may be accomplished 
in different ways.  In the case where Gc and Gm can be isolated 
or approximated, they can be combined in series as in (9).  
The contribution to Gcm1 (the conductance of the series Cassie-
Mayr model) will be dominated by Gc in the high current 
region and by Gm in the small current region, with a smooth 
transition in between [3, 4]. 
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Another model [4] that demonstrates the combined Cassie 
and Mayr behavior is defined in Equation (10).  The time 
constant and power loss are both assumed to vary with the 
conductance, according to experimentally defined constants α 
and β.  The time constant for this model is now a function 

βθθ )( 20 cmG=  and the power loss is α)( 20 cmloss GNQ = . 
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Models derived from physical principles can give more 
accuracy for a greater range of situations, can be used to better 
predict wafer heating and can be represented in a circuit or 
state space form and imported as a macro into a circuit 
simulator. This paper presents a dynamic model of a high 
pressure arc lamp that is derived from first principles and can 
be designed to meet a specific accuracy requirement. A finite 
volume arc model was derived using averaging of the energy 
balance equation over spatial domains. 

The specific contribution of this paper is to define the 
method for deriving a space averaged arc model.  The method 
used is one which employs physical and geometric data to set 
the coefficients in the equations thus avoiding the problem of 
system identification.  This model is in a form that can be 
expressed with a circuit, while giving the expected v versus i 
and optical output characteristics. 
 

II. DESCRIPTION OF MODEL 
The lamp is cylindrical in shape with current flow in the 

axial direction, as shown in Figure 1.  The lamp consists of a 
hollow quartz cylinder where argon gas is pumped in near the 
cathode and out near the anode.  In this particular lamp, water 
is used for cooling and to protect the quartz tube; a stream of 
water is swirled around the inside surface of the quartz tube, 
creating a sheet of water between the argon arc and the quartz 
tube.  In the model described in this paper, the water is 
assumed to hold the outer edge of the arc at a constant 
temperature.  In reality, the water wall will be partially 
vaporized and so the lamp will be a mixture of argon and 
water vapor, however in this paper water-wall mixing is not 
considered.  End effects are initially neglected, as is the 
movement of gas along pressure gradients in the radial, 
circumferential and axial directions.  The end effects can be 
treated separately and then the voltage drop across these 
regions can be added to the arc voltage. These assumptions 
thus imply that there is no heat or radiation flowing into or out 
of the arc in an axial direction and hence the arc has a 
temperature dependency only in the radial direction. A per 
unit length model of the lamp is sought. The main goal of this 
paper is to demonstrate that the modeling concept described is 
feasible: the process could be generalized to include other 
coupling terms in the future. 

 

A. Energy Balance Equation 
The law of conservation of energy is used as a basis for the 

model.  T is temperature, Cp is the heat capacity, ρ is the 
density, κ is the thermal conductivity, σ is the electrical 
conductivity, and ε0 is the net radiative emissivity.  The 
transport and thermodynamic coefficients are all nonlinear 
functions of temperature. The energy balance equation for any 
point in the lamp is described by equation (11). The 
constitutive equation for the electric field is described by 
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equation (12); the integral is over the volume of the arc.  The 
temperature is constant on the arc walls; an adiabatic boundary 
condition is applied on both ends of the arc. 
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B. Spatial Integration 
Spatial integration of equations (11) and (12) is used to 

transform the partial differential equation into a set of ordinary 
differential equations.  The lamp cross-section is divided into 
nested concentric shells (shown in Figure 2), and an integrated 
energy equation is found for each region. The temperature, T, 
is assumed independent of length and angle, resulting in 
equations defined per unit length. 

Integrating equation (11) over a shell and applying the 
divergence theorem yields equation (13) for the region j 
between radii rj and rj+1. 

−2πrκ∂T
∂r rj+1

+2πrκ∂T
∂r rj

=Aj(σE2(t)−4πε0)−Aj(Cpρ
∂T
∂t

)  (13) 

Here, Aj = π(rj+1
2-rj

2) is the cross-section area and the overline 
is the cross-section average. 

 

C. Thermal Circuit Model 
Given a shell of thickness Δ, if functions f and g are smooth 

enough then ).( 2Δ+= Ogffg   Therefore for a thin shell, the 
approximation in (14) is made 

      Cp (T)ρ(T)
∂T

∂t
= Cp (T)ρ(T)

∂T

∂t
= Cp (T)ρ(T)

∂T
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Equation (13) can be used to define a circuit where the 
equation describes the current entering node A in Figure 3. 
The thermal circuit for each region can be connected in series 
to give a thermal circuit representation of the entire lamp. 

It remains to present a circuit for the electrical field given 
by equation (12).  The conductances (15) for each region are 
connected in parallel to form a circuit describing the per-unit 
length electrical behavior of the lamp.  The average is taken 
over each shell.  See Figure 4. 

G j = A jσ (T ) j
   (15) 

The electrical and thermal circuits are linked through the 
temperature and electric field.  The thermal resistances and 
capacitances, the controlled current source, and the electrical 
conductances are all dependent on temperature. The controlled 
current source is dependent on temperature and electric field.  

 

D. Ordinary Differential Equation Model 
For a division of the lamp into n regions, the combined 

circuit model of the lamp describes a system of n+1 equations: 
n differential equations for the thermal behavior and one 
algebraic equation for the electrical circuit. The radii 

determining the n regions are 0 < δ = r1 < r2 < … < rn < rn+1 = 
R where R is the radius of the lamp.  The midpoint of each 
region is rmidj = (rj+rj+1)/2. 

The first step in approximating equation (13) on the region 
bounded by rj and rj+1 is to approximate each mean value on 
the right-hand side of (13) with the corresponding functions 
evaluated at the midpoint rmidj.  By the Integral Mean Value 
Theorem ([5], page 4), each of these mean values will be 
achieved at some point within the region; for a sufficiently 
thin shell, this point can be approximated by the midpoint of 
the shell: rmidj.  

The second step is to find an approximation for the each of 
the conductive heat loss terms on the left-hand side of (13): 

 2πrκ (T )
∂T

∂r r j

  (16) 

The natural finite-difference approximation would be 

2πrj

κ (Tmid ( j−1)) + κ (Tmidj )

2

Tmidj − Tmid ( j−1)

rmidj − rmid ( j−1)

  (17) 

However, this expression is not easily implemented in a 
circuit.  Instead, an approach based on thermal resistance is 
used: the conductive heat loss is approximated by 

Qcondj =
Tmidj − Tmid ( j−1)

Rinj + Routj

,   2 ≤ j ≤ n   (18) 

where Rinj and Routj are the thermal resistances of half of the  
inner shell whose outer wall radius is rj and half of the outer 
shell whose inner wall radius is rj, respectively.  These are 
found by approximating the thermal resistance ([6], §3.3) for a 
shell of inner radius ra and outer radius rb with constant 
conductance κ  

 
πκ2

)ln( ab
ab

rrR =   (19) 

and then assuming that the ratio between rb-ra and ra is much 
less than one, a Taylor expansion of equation (19) results in 

R outj =
r j − r j −1

4 πr jκ (Tmid ( j −1) )
 2 ≤ j ≤ n +1 (20) 

 

      Rinj =
r j +1 − r j

4 πr jκ (Tmidj )
     1 ≤ j ≤ n  (21) 

n differential equations are generated, one for each region.  
The innermost region and outermost regions have different 
structures than the other regions, due to the boundary 
conditions at r1 and rn+1. 

dTmid1

dt
=

−Qcond 2 + Qjoule1 − Qrad1

Ctherm1

  (22) 

dTmidj

dt
=

Qcondj − Qcond ( j +1) + Qjoulej − Qradj

Cthermj

,2 ≤ j ≤ n −1 (23)

 dTmidn

dt
=

Qcondn − Qcond (n +1) + Qjoulen − Qradn

Cthermn

 (24) 

Equations (25) to (28) define the terms used in the differential 
equations.      

 Cthermj = A jCp (Tmidj )ρ(Tmidj )    (25) 
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    Qcond (n +1) = Twater − Tmidn

Rout (n +1)

   (26) 

 Qjoulej = A j E(t)2σ (Tmidj )                 (27) 

 Qradj = A j 4πε0(Tmidj )    (28) 
 
The outer boundary condition is the water wall temperature. 

The inner boundary condition cannot be chosen to be at r=0 
since equation () becomes singular. However, at a distance δ 
from the centre it is reasonable to assume that the heat flux 
and radiation flux is vanishingly small.    

It remains to model equation (12) for the electrical field.  In 
terms of the shells, it is iin(t) = E(t)Garc(t) where  

∑
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Using (29) would result in a differential algebraic system with 
n ODEs and one algebraic equation.  Differential algebraic 
systems cannot be solved via standard approaches such as 
MATLAB’s Simulink, and for this reason, it is advantageous 
to include a parasitic electrical capacitance Cin in parallel with 
the electrical circuit. 
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This parasitic capacitance would exist in a real lamp, 
although it would be so small that it would have a negligible 
effect on the circuit behavior.  Including a parasitic 
capacitance creates a system of n+1 differential equations for 
which a wider variety of numerical solvers can be used.  This 
is in line with the goal of defining a model that can be used in 
a practical circuit design. 

The outputs of the model are the total arc conductance (29) 
and the total radiation up to an (arbitrary) time t:   

 Qrad _ arc (t) = Qradj

j=1

n

 (s)ds
0

t  (31) 

III. CIRCUIT IMPLEMENTATION 
It would be advantageous to be able to import the arc model 

into a circuit simulator in order to more easily design and test 
a power source for the arc.  A Simulink circuit implementation 
of the ordinary differential model was therefore designed and 
simulated.  The construction of the needed temperature-
dependent resistors and capacitors is now presented.  

 

A. Material Properties 
Five temperature-dependent material properties, σ(T), κ(T), 

Cp(T), ρ(T), and ε0(T) appear in the energy balance equation 
(1) and (2).  Because Cp(T) and ρ(T) never appear separately 
in the equations used, but only as a product, the function 
Cp(T) ρ(T) is treated as a single function.  In all of the models 
simulated, known material properties of argon gas at 8 bar are 
used for these functions. This pressure corresponds 
approximately to the environment expected for the vortex 
water-wall arc lamp.  The functions were available in tabular 
form at 100K intervals and were implemented using linearly-

interpolated lookup tables [7].   

B. Circuit Model of Temperature-Dependent Thermal 
Resistors 
The series thermal resistors were implemented using a 

dependent current source.  Routj and Rin(j+1) are directly 
connected in series, and so are implemented using one current 
source (Figure 5).  The circuit shown in Figure 4 implements 
equation (32) 
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C. Circuit Model of Temperature-Dependent Capacitor 
Implementing a non-linear capacitor adds extra complexity 

as there must be a differential or integral component in the 
model.  Integral components are advantageous as they are 
more stable, so in the case of a capacitor the current-dependent 
voltage source implementation is preferred.  However, this 
means that the capacitor must be modeled using a charge-
based model. 

 
By definition the relationship between the voltage across a 

capacitor and the current through it is given by (33a). 
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dvvC
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dv
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Charge Φ is a function of voltage Φ = h(v), so 
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If the equation is integrated then:  

i(s)ds
0

t

 = dh(v)
dv

dv(s)
dt

ds
0

t

 = h(v(t)) − h(v(0)) (34) 

))0(()())(()(
0

vhdssitvht
t

+==Φ                     (35) 

If the charge Φ is an increasing function of the voltage v then 
the voltage is a function of the charge: v = g(Φ) for some g. 
That is, 

 )))0(()(()(
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(In the special case of a voltage-independent capacitor C(v) = 
C0, then h(v)= C0v and g(Φ) = Φ/C0.)  A Simulink 
implementation of the charge-based capacitor (36) is shown in 
Figure 6.  For this model, h = Cρ.  It and its inverse are found 
by linear interpolation from the data obtained from [7].   

The remaining resistors and current sources are 
implemented similarly using dependent current sources and 
appropriate linearly extrapolated lookup tables. 
 

IV. SIMULATIONS 

A. Approach Used for Validation of Model 
The energy balance equation (11-12) for an arc lamp is well 

known from the literature [8] and is assumed to be valid.  In 
this section, the finite volume method (FVM) model 
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(equations (22-24), (30)) is tested against the finite element 
method (FEM) model of equations (11-12). All FEM 
modeling was done in COMSOL Multiphysics, while FVM 
modeling was done using MATLAB’s ode15s ODE solver or 
(when stated) in MATLAB’s Simulink.  Rather than 
computing the 3-d equation (11), the 1-d reduction to radial 
coordinates is computed.  The FEM model is always 
computed with a large number of elements, resulting in a 
highly accurate numerical solution to the energy balance 
equation (11-12). For all FEM and FVM modeling, the 
material constants Cp(T), ρ(Τ), κ(Τ), ε0(Τ), and σ(Τ) were 
found via linear interpolation based on known properties of 
argon gas at a pressure of 8 bar [7].  In all simulations, the 
temperature at the outer wall is 300K, the radius of the arc, R, 
is 45mm, and the inner-most radius, δ, is 0.1mm.  

 Several steady state simulations of the FEM model were 
also initially compared to expected results for a radiation-
dominated lamp as a means of validating the FEM model.  
 

B. Finite Element Method Model 
Steady state and transient FEM simulations were run in 

order to establish the behavior of the arc under different 
conditions.  Figure 7 shows the temperature profile for a radial 
cross-section of the arc in response to a sinusoidal input pulse.  
Before the pulse, the lamp was in the steady state 
corresponding to a constant simmer current of 400A. The 
input pulse was superimposed on this current. 

In this case, although the arc retains an isothermal core 
which rises and falls in temperature, the heat capacity of the 
arc prevents the pulse from affecting the outer edges of the 
arc.  As shown in Figure 7, the core width expands at a much 
slower rate than the rate with which the core temperature rises 
and falls; in this case, the core never fully fills the lamp.  The 
lamp cools much more slowly than it heats, and continues to 
radiate for some time after the end of the current pulse. 

 

C. Finite Volume Method Model  
Steady-state and transient simulations were run based on the 

FVM model described in equations (22-24), (30).   
First, it was checked that the FVM model converges to a 

continuous solution as the number of regions becomes large. 
The steady state for the 400A simmer current was computed 
using an increasing number of regions.  The temperature at a 
given point in space can be calculated and the results 
compared for different numbers of regions to track the 
behavior at a single point as n becomes large.  Division of the 
arc into 12, 36, 108, and 324 regions was used to track the 
behavior of 12 points equidistant along the radius as n 
increased.  The error was found to decrease at a rate of 1/n1.6.  
A justification for the formula used in equation (37) may be 
found in ([6], p.292). 

T(r)36 − T(r)12

T(r)108 − T(r)36

≈ T(r)108 − T(r)36

T(r)324 − T(r)108

≈ 6 ≈ 31.6   (37) 

Next, a tanh function  
iin (t) = 400 + 29800(1+ tanh(2π (t − .05))) 

was used as an input current to investigate the transient model 
behavior with differently sloped time-varying input currents 
and a different number of elements. Element temperatures and 
arc voltage are shown for an increasing number of elements in 
Figures 8 and 9. 

At certain points in time, there is a sudden small drop in the 
temperature and voltage in all regions.  When the current 
through the arc is raised, the inner regions of the arc rise in 
temperature, and the isothermal core widens.  As it widens, 
adjoining regions become hotter and join the isothermal core. 
As the core expands nearer to the outer radius of the lamp, this 
transition becomes increasingly abrupt.  When an outer 
element’s temperature undergoes a large increase very 
quickly, the core temperature drops very slightly. 

These drops in temperature and voltage remain the same 
size regardless of the error tolerances set in ode15s. And so, 
they appear to be an artifact of the finite volume method.  
When compared with FEM simulations using the same 
number of elements, the same error tolerances, and linear 
fitting functions, the finite volume method results for the 
temperature at r = 0 slightly overshoot the more accurate FEM 
result and then drops down slightly below the FEM result 
(Figure 9).  As the number of regions is increased, the FVM 
steps become smoother and the two models become 
increasingly similar.  

Small sudden changes in the solution are seen when there is 
a large and abrupt temperature change in a region.  It may be 
feasible to remove this high frequency behavior without 
significantly changing the arc behavior on the time scale of 
interest, for example with the introduction of small parasitic 
elements linking each region in a form of feed forward 
filtering.  This possibility should be explored.  
 

D. Finite Volume Method with LC Pulse-forming Network 
The FVM model is now expanded to include a simple LC 

pulser circuit, as shown in Figure 10.  Iss represents the simmer 
current which remains between pulses and maintains the arc.  
The capacitor Cch is initially charged with a voltage Vch.  The 
switch is closed to begin the pulse, and is reopened at the next 
zero-crossing of the pulser current iL.  The resulting current 
pulse through the arc model is a nearly sinusoidal pulse and is 
a half a period in duration. 

The differential equations describing the circuit are (22)-
(24) and (38) for the arc itself, with iin in equation (30) 
replaced by Iss + iL(t),giving 

in

arcssL

C
EGIi

dt
dE −+

=    (38) 

and equation (39) and (40) for the pulser, shown to the left of 
the arc in Figure 11.  The variable ‘switch’ is set to 1 to close 
the switch, and reset to 0 at the next zero-crossing of the 
inductor current iL to reopen the switch.  The initial data is 
vch(0)=Vch and iL(0)=0. This results in a single pulse.   

 switch
C

i
dt

dv

ch

Lch •−=    (39) 
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Ev
dt
di

ch

chL •
−

=    (40) 

It remains to find reasonable values for Lch, Cch, and Vch.  
This is done by considering the LC circuit in isolation from 
the arc lamp.  It has a pulse width  

 chchCLPW π=     (41) 

The total energy stored in the electric field of the capacitor is 
transferred to the magnetic field of the inductor, which 
provides the pulse current for the arc. For an initial 
approximation, the loss caused by the arc resistance may be 
ignored.  The pulser voltage and current, vch(t) and iL(t) are 
assumed to be approximately sinusoidal with peak amplitudes 
of Vch and IL respectively. Thus the total energy is (42): 

 
22

22
Lchchch

J
ILVCE ==    (42) 

Given a desired pulse width, PW, and peak current, IL, one can 
find Lch, Cch, and Vch that satisify equations (41) and (42), 
leaving one degree of freedom. 

 

E. Simulation Results 
Simulation results for a circuit with Lch = 160μH and Cch = 

500μF, with charging voltage Vch=15kV, were compared to a 
well-resolved solution of the FEM model.  Since a charging 
circuit cannot easily be added to the FEM model, the FEM 
model was run using a sinusoidal input current with amplitude 
and period chosen to match the current observed in the ODE 
model with the pulser. 

The temperature at the centre of the arc, Tmid1, is plotted in 
Figure 12, and the electric field in Figure 13. Two versions of 
the FVM model were ultimately simulated: one solved the 
differential equations directly in MATLAB, and the second 
was a Simulink circuit implementation.  Figure 14 compares 
the arc radiation output for the two different FVM 
implementations and the FEM model. 

The radiation dose at some particular time is the most 
important final metric, as it dictates the amount of heat 
transferred to the wafer.  This is Qrad_arc(s) (31) integrated 
from time 0 to time T.   The radiation dose at several points in 
time is tabulated in Table 1 with the different models.  
Although more elements give higher accuracy, at 12 elements 
the worst error in dosage is less than 0.4% for this pulse.  The 
FEM model is taken as the exact solution in defining this 
error. 

The simulations were done with regions spaced at 
increments of equal radius.   As seen in Figure 7, for pulsed 
operation superimposed on an initial simmer current, a large 
central portion of the arc rises and falls essentially as one, 
without significant radial temperature gradients. 

V. CONCLUSIONS 
A finite volume arc model was derived using averaging of 

the energy balance equation over spatial domains.  The space 
averaging approach accurately models the PDE form of the 
energy balance equation, with both steady state and transient 
arc currents, including high energy pulses with a current 

amplitude range from 400A to 40kA and a pulse width of a 
millisecond or less. 

The developed spatially averaged model uses physical and 
geometric data to set the coefficients in the equations thus 
avoiding the problem of system identification.  This model is 
in a form that can be expressed in circuit form, while giving 
the expected temporal v versus i and optical output 
characteristics. 

Optimization of the spacing of regions would be expected to 
result in greater accuracy with a smaller number of regions. A 
smaller number of regions could be used near the centre of the 
lamp, with more densely spaced regions near the outer radius 
where there is a strong radial dependence of temperature. 
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TABLE 1 - TOTAL RADIATION DOSE FROM ONSET OF SIMULATION TO GIVEN 
TIME 

Integral 
of Qrad 
(kJ) 

MATLAB 
12 
elements 

Simulink  
12 
elements 

MATLAB  
24 
elements 

COMSOL 
240 
elements 

COMSOL 
480 
elements 

at 1ms 15.06 15.09 15.02 15.03 15.04 

at 2ms 17.02 17.06 17.00 17.04 17.05 

at 3ms 17.51 17.53 17.44 17.50 17.50 
 
 

 
Figure 1 - View of lamp showing end effects and conduction regions 
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Figure 2 - Problem domain and regions.  The shaded region between r = rj 
and r = rj+1 is region ‘j’ 

 
Figure 3 - Thermal circuit representation of one ring-shaped arc region 
 

 
 

Figure 4 – Electrical circuit for n-region arc model 
 

 
 
 
Figure 5 – (top) Simulink implementation of two voltage dependent resistors 
in series, and (bottom) equivalent circuit. 

 

 
Figure 6 – (top) Simulink implementation of voltage dependent capacitor, and 
(bottom) equivalent circuit. 
 

 
Figure 7 –Temperature as a function of arc radius for different points in time 
in response to a current pulse. A sinusoidal pulse with a peak current of 40kA 
and a 1.125ms pulse width is superimposed on a constant baseline current of 
400A. 

 

 
Figure 8- Temperature for each region and arc electric field for a tanh current 
where n=12. A sudden drop in values may be seen in the circled areas. 
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Figure 9 - Temperature for each region and arc electric field for a tanh current 
where n=36. 

 

 
Figure 10 – Comparison of FVM and FEM temperature responses as a 
function of time for the innermost region (Tmid1). 

 
Figure 11 – Arc model including pulse forming circuit 
 

 
Figure 12 - Central temperature in response to a 56.25kJ pulse.  FEM with 240 
elements is overlaid on the same graph as FVM (equation based model) with 
24 elements. 

 

 
Figure 13 - Arc electric field in response to a 56.25kJ pulse.  FEM with 240 
elements is overlaid on the same graph as FVM (equation based model) with 
24 elements.  

 
Figure 14 – Arc radiation in response to a 56.25kJ pulse.  Comparison of 12 
element FVM with 240 element FEM.  The 12 element FVM has a slightly 
higher peak radiation. 
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